
Smart Contract Code

Review And Security

Analysis Report

Customer: Gitswarm

Date: 08/05/2024

We express our gratitude to the Gitswarm team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

GitSwarm is a platform designed to bring together developers, project owners, and investors in a

collaborative environment for creating and investing in innovative token-governed projects. It serves

as a versatile ecosystem where freelancers can showcase their skills and bid on tasks, project owners

can find talented individuals to bring their ideas to life, and investors can discover and support

emerging projects before they become mainstream.

Platform: EVM

Language: Solidity

Tags: Voting, Governance, ERC20, Upgradeability, Proxy

Timeline: 30/04/2024 - 06/05/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/GitSwarmOrg/contracts

Commit a07999c

2

https://hackenio.cc/sc_methodology
https://github.com/GitSwarmOrg/contracts

Audit Summary

10/10 10/10 100% 10/10
Security score Code quality score Test coverage Documentation quality score

Total 10/10
The system users should acknowledge all the risks summed up in the risks section of the report

5 3 1 1
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 2

Low 3

Vulnerability Status

F-2024-2204 - Missing zero address validation Mitigated

F-2024-2353 - Proposals can be executed with spam votes Accepted

F-2024-2218 - Unfinished code can result in too short voting periods Fixed

F-2024-2226 - Missing checks on transferring non-standard ERC20 tokens Fixed

F-2024-2270 - Missing storage gaps in upgradeable contracts Fixed

3

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/b1929545-171f-4f40-b1fa-2d92a5162672
https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/9105b0c6-6015-460f-ab68-dd178d7f483e
https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/9a233fc5-b0d1-4d34-a03c-27ea11c42324
https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/5802d66e-8d45-4417-8164-cf5b45779817
https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/18c992c8-e38b-4f5a-b7de-4a69f4596727

This report may contain confidential information about IT systems and the intellectual property of the

Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication

of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Gitswarm

Audited By David Camps Novi, Viktor Lavrenenko

Approved By Przemyslaw Swiatowiec

Website https://gitswarm.com

Changelog 08/05/2024 - Preliminary Report; 22/05/2024 - Final Report

4

https://gitswarm.com/

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 8

Documentation Quality 8

Code Quality 8

Test Coverage 8

Security Score 8

Summary 8

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 24

Disclaimers 39

Appendix 1. Severity Definitions 40

Appendix 2. Scope 41

System Overview

GitSwarm is a project that allows users to create DAO projects with their voting tokens. It contains the

following contracts:

Common.sol - this contract integrates shared logic and initializations.

Constants.sol - defines immutable constants used across the GitSwarm contracts, which

includes the burn address and numerical representations of proposal types.

ERC20Base.sol - this contract is a standard ERC20 token implementation. It provides a solid

foundation for the deployment of either ExpandableSupplyToken.sol or

FixedSupplyToken.sol, which include constructors that are missing in this base contract.

ERC20Interface.sol - defines the standard functions for an ERC20 token, enabling interoperability

across different platforms and contracts.

ExpandableSupplyTokenBase.sol - this contract extends ERC20Base to support expandable

token supplies. It allows

Interfaces.sol - defines interfaces for ContractsManager.sol, Delegates.sol,

FundsManager.sol, GasStation.sol, Proposal.sol, and Parameters.sol.

MyTransparentUpgradeableProxy.sol - an implementation of the transparent proxy pattern for

upgradable contract logic without losing state.

SelfAdminTransparentUpgradeableProxy.sol - the same as MyTransparentUpgradeableProxy.sol

with a key difference: this version initializes itself as its own admin.

ContractsManager.sol - the contract manages governance-related functionalities including

upgrades, handling of trusted addresses, modifications of voting tokens, and management of

burn addresses through proposal mechanisms. It leverages OpenZeppelin's transparent

upgradeable proxy pattern for upgradability.

Delegates.sol - the contract allows participants to delegate and undelegate their voting power.

Through this system, users can delegate their voting power to others whom they trust to vote on

their behalf, enhancing the flexibility and reach of their influence within the project. Delegation

spam management is handled in this same contract.

ExpandableSupplyToken.sol - an ERC20 token, which can be used as a voting token with a supply

that can be expanded via proposals.

FixedSupplyToken.sol - an ERC20 token, which can be used as a voting token with a fixed supply.

FundsManager.sol - the contract that handles the Ether and ERC-20 token funds for each project

created on GitSwarm.

GasStation.sol - the contract that allows projects to buy gas and to manage transfers to gas

addresses through proposals.

Parameters.sol - this contract manages the parameters and trusted addresses for projects. It

allows for proposing and executing changes to parameters and trusted addresses.

Proposal.sol - this contract enables token holders with sufficient project voting tokens to

participate in the direction of projects through a structured proposal flow. This flow encompasses

the creation, voting, contesting (optional), and execution phases of proposals.

UpgradeableToken.sol - the contract which is used for the GitSwarm token. It is the same as

ExpandableSupplyToken.sol, with the key distinction being its upgradeability.

Privileged roles

6

The project has only one role which is a trusted address. Any address from the following list can

be the trusted address:

the addresses of the contracts: Delegates.sol, FundsManager.sol, Parameters.sol,

Proposal.sol, GasStation.sol, ContractsManager.sol.

all voting tokens of the created projects.

the array of trusted addresses that can be added via proposals.

The trusted address can use the following project's functionality:

FundsManager.sol::sendEther(), sendToken(),updateBalance() - allows to send

Ether/ERC20 from the project's balance or update the project's balance.

Parameters.sol::initializeParameters() - initialize parameters for a project.

Proposal.sol::setActive(), setWillExecute(), createProposal(),

deleteProposal() - allows to change the status of a proposal manually. In addition to that,

it enables trusted addresses to create or delete the proposals.

7

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation quality score is 10 out of 10.

Functional requirements are partially provided:

System roles are not described.

Technical descriptions are sufficient:

Deployment instructions are defined.

Technical specification is provided.

The code has the necessary NatSpec comments.

Code quality

The total Code quality score is 10 out of 10.

The code adheres to the best practices.

The Solidity Style Guide is followed.

Test coverage

Code coverage of the project is 100% (branch coverage).

Deployment and basic user interactions are covered with tests.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 2 medium, and 3 low severity issues.

Out of these, 3 issues have been addressed and resolved, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score

reflects the combined evaluation of documentation, code quality, test coverage, and security aspects

of the project.

8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The project utilizes Solidity version 0.8.20 or higher, which includes the introduction of the

PUSHO (0x5f) opcode. This opcode is currently supported on the Ethereum mainnet but may not

be universally supported across other blockchain networks. Consequently, deploying the

contract on chains other than the Ethereum mainnet, such as certain Layer 2 (L2) chains or

alternative networks, might lead to compatibility issues or execution errors due to the lack of

support for the PUSHO opcode. In scenarios where deployment on various chains is anticipated,

selecting an appropriate Ethereum Virtual Machine (EVM) version that is widely supported across

these networks is crucial to avoid potential operational disruptions or deployment failures.

The project allows users to use any ERC20/non-ERC20 tokens as a voting token, which can lead

to unexpected behavior. This will affect new projects that are not going to use the possible

ERC20 tokens created in the system scope (i.e. FixedSupplyToken, ExpandableSupplyToken,

UpgradeableToken).

Iterating over a dynamic array populated with custom length can lead to gas limit denial of

service if the number of elements goes out of control. This scenario is possible in:

Delegates::undelegateAddress, undelegateAllFromAddress.

Proposal:: getVoteCount, removeSpamVoters.

The parameter creatorSupply have no restrictions when initializing the project's ERC20 tokens

and allows the token creator to hold up to 100% of the total token supply initially. Thus the

creator controls the voting power of the corresponding project, being able to: sending tokens,

changing burn and trusted addresses, etc. Such address can also control the token supply for

those tokens that can mint more tokens. Additionally, those tokens may not be checked to be

ERC20 compliant, as explained deeper in F-2024-2355.

The addresses added into the trustedAddresses array hold the privilege to interact with

several functions of the project (e.g. setWillExecute). This provides such addresses high

power to affect the project outcomes. For example, a trusted address can send tokens at their

will via sendToken and sendEther.

Any address can be added into trustedAddresses as long as it is voted to be. Thus it is

possible that a malicious address will receive this privilege.

The addresses included in burnAddresses via ContractsManager::executeProposal can

be updated to addresses controlled by some users to gain some extra tokens. For example, a

user having control of the voting power, can use their own address as a burn address and avoid

burning their tokens in FundsManager:: reclaimFunds.

The voting token of a project can be changed after the project is started via

ContractsManager::proposeChangeVotingToken(). Hence it is possible that users

collected a certain token to vote in a project but it is later changed and such users would lose

their voting power and token value.

GitSwarm token holders have control of the upgrade process via proposeUpgradeContracts.

The contracts of the project are upgradeable. As such, it is possible that new implementations

are used that have changes from the audited code and may not be secure.

9

Findings

Vulnerability Details

F-2024-2218 - Unfinished code can result in too short voting periods

- Medium

Description: As part of the process of preparing the application for the production

stage, it is important to address developer comments, especially TODOs.

These comments often highlight missing functionalities or necessary

validation checks that should be implemented.

The TODO comments were found in the following functions:

Parameters::initializeParameterMinMax()

Parameters::internalInitializeParameters()

The TODO comments found in the previous functions correspond to the

necessity to update several time shifts to larger, feasible times. The

current timestamps are too short to make the voting viable and should be

updated.

Assets:
Parameters.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 5/5

Exploitability: Semi-Dependent

Complexity: Simple

Likelihood [1-5]: 5

Impact [1-5]: 3

Exploitability [0-2]: 1

Complexity [0-2]: 0

Final Score: 3.0 (Medium)

Severity: Medium

10

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/9a233fc5-b0d1-4d34-a03c-27ea11c42324

Recommendations

Remediation: Update the timestamps and remove the TODO comments.

Resolution: The timestamps in initializeParameterMinMax were updated,

deleting the TODO comments too, in the commit f830c0c.

11

F-2024-2270 - Missing storage gaps in upgradeable contracts -

Medium

Description: When working with upgradeable contracts, it is necessary to introduce

storage gaps to allow for storage extension during upgrades. Storage

gaps are a convention for reserving storage slots in a base contract,

allowing future versions of that contract to use up those slots without

affecting the storage layout of child contracts. Otherwise, it may be very

difficult to write new implementation code. Without a storage gap, the

variable in the child contract might be overwritten by the upgraded base

contract if new variables are added to the base contract. This could have

unintended and very serious consequences for the child contracts.

Assets:
ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

Delegates.sol [https://github.com/GitSwarmOrg/contracts]

FundsManager.sol [https://github.com/GitSwarmOrg/contracts]

GasStation.sol [https://github.com/GitSwarmOrg/contracts]

Proposal.sol [https://github.com/GitSwarmOrg/contracts]

UpgradableToken.sol [https://github.com/GitSwarmOrg/contracts]

Parameters.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 2/5

Exploitability: Semi-Dependent

Complexity: Simple

Likelihood [1-5]: 2

Impact [1-5]: 5

Exploitability [0-2]: 1

Complexity [0-2]: 0

Final Score: 2.7 (Medium)

Severity: Medium

Recommendations

12

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/18c992c8-e38b-4f5a-b7de-4a69f4596727

Remediation: It is recommended to introduce the storage gaps in the affected contracts

(i.e. base contracts of the upgradeable contracts).

To create a storage gap, declare a fixed-size array in the base contract

with an initial number of slots. This can be an array of uint256 so that

each element reserves a 32 byte slot. Use the name __gapor a name

starting with __gap_ for the array so that OpenZeppelin Upgrades will

recognize the gap.

To help determine the proper storage gap size in the new version of your

contract, you can simply attempt an upgrade using upgradeProxy or just

run the validations with validateUpgrade (see docs for Hardhat or

Truffle). If a storage gap is not being reduced properly, you will see an

error message indicating the expected size of the storage gap.

Resolution: The issue was fixed by implementing storage gaps in the Common and

ExpandableSupplyTokenBase contracts, in the commit f830c0c.

13

https://docs.openzeppelin.com/upgrades-plugins/1.x/api-hardhat-upgrades
https://docs.openzeppelin.com/upgrades-plugins/1.x/api-truffle-upgrades

F-2024-2204 - Missing zero address validation - Low

Description: In Solidity, the Ethereum address

0x00 is known as the

"zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an

invalid or non-existent address. The "

Missing zero address control" issue arises when a Solidity smart contract

does not properly check or prevent interactions with the zero address,

leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address

without any checks, which essentially burns those tokens as they become

irretrievable. While sometimes this is intentional, without proper control or

checks, accidental transfers could occur.

The functions and parameters which lack zero address checks:

Common::_init() → _delegates, _fundsManager,

_parameters, _proposal, _gasStation,

_contractsManager.

ERC20Base:: transferFrom() → _from, approve() →

_spender.

Proposal:: privateCreateProposal() → voterAddress.

Parameters:: initialize() → _gitswarmAddress.

GasStation:: proposeTransferToGasAddress() → to.

ContractsManager:: proposeUpgradeContracts() →

_delegates, _fundsManager, _parameters, _proposal,

_gasStation, _contractsManager.

FundsManager:: sendEther.

Assets:
Common.sol [https://github.com/GitSwarmOrg/contracts]

ERC20Base.sol [https://github.com/GitSwarmOrg/contracts]

ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

FundsManager.sol [https://github.com/GitSwarmOrg/contracts]

GasStation.sol [https://github.com/GitSwarmOrg/contracts]

Proposal.sol [https://github.com/GitSwarmOrg/contracts]

Parameters.sol [https://github.com/GitSwarmOrg/contracts]

Status: Mitigated

Classification

Impact: 2/5

Likelihood: 2/5

14

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/b1929545-171f-4f40-b1fa-2d92a5162672

Exploitability: Semi-Dependent

Complexity: Simple

Likelihood [1-5]: 2

Impact [1-5]: 2

Exploitability [0-2]: 1

Complexity [0-2]: 0

Final Score: 1.7 (Low)

Severity: Low

Recommendations

Remediation: It is recommended to introduce checks in the aforementioned cases in

order to avoid using the zero address.

Resolution: Zero address checks were implemented for token-receiving addresses in

commit 2df1e28. Other checks will be implemented off-chain, as reported

by the development team:

We have addressed the cases where this could result in an

immediate loss of a lot of funds. The remaining cases only result

in a waste of Gas and we plan to only address them on the front-

end.

15

F-2024-2226 - Missing checks on transferring non-standard ERC20

tokens - Low

Description: The contract FundsManager.sol uses require() statements to handle

the return boolean values of transfer() and transferFrom() methods

of ERC20 tokens.

However, not all tokens follow the ERC20 standard and can return no

value at all. In such cases, all calls will revert, resulting in unexpected

behavior.

The FundsManager.sol's affected functions:

FundsManager::depositToken()

FundsManager::executeTransactionProposal()

FundsManager::sendToken()

FundsManager::reclaimFunds()

Assets:
FundsManager.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 1/5

Exploitability: Independent

Complexity: Medium

Likelihood [1-5]: 1

Impact [1-5]: 4

Exploitability [0-2]: 0

Complexity [0-2]: 1

Final Score: 1.8 (Low)

Severity: Low

Recommendations

Remediation: Use SafeERC20 library to interact with tokens safely. The SafeERC20

library checks the return value call to ERC20 tokens, but also considers

16

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/5802d66e-8d45-4417-8164-cf5b45779817
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

the case in which tokens do not return any value.

Resolution: The SafeERC20 was incorporated into the reported FundsManager

contract functions. Hence, the issue was fixed in the commit f830c0c.

Evidences

Proof of Concept

Reproduce:
The following Proof of Concept demonstrates that calling the

Test::handleTransfer() will not lead to the revert, if the

ERC20Token::transfer() will be successful. The opposite scenario will

be that the call of the Test::handleTransfer() will revert if the code

does not use the SafeERC20 library and IERC20(token).transfer() is

used instead of the IERC20(token).safeTransfer().

// SPDX-License-Identifier: MIT

pragma solidity 0.8.25;

import "@openzeppelin/contracts@5.0.2/token/ERC20/IERC20.sol";

import "@openzeppelin/contracts@5.0.2/token/ERC20/utils/SafeERC20.so

l";

contract Test {

using SafeERC20 for IERC20;

function handleTransfer(address token, address to, uint256 value) ex

ternal {

IERC20(token).safeTransfer(to, value);

}

}

contract ERC20Token {

uint public transferHappens;

function transfer(address to, uint256 value) public {

// imitation of a transfer

transferHappens += 1;

}}

The output:

The second scenario can be found below.

// SPDX-License-Identifier: MIT

pragma solidity 0.8.25;

import "@openzeppelin/contracts@5.0.2/token/ERC20/IERC20.sol";

contract Test {

function handleTransfer(address token, address to, uint256 value) ex

ternal {

require(IERC20(token).transfer(to, value), "");

}

}

contract ERC20Token {

uint public transferHappens;

function transfer(address to, uint256 value) public {

transferHappens += 1;

17

}

}

The output:

See more

18

F-2024-2353 - Proposals can be executed with spam votes - Low

Description: When a user wants to vote for a proposal, they will call the method vote.

Such function contains the modifier hasMinBalance, which will ensure

the user's voting power surpasses a certain threshold required to vote.

function vote(uint projectId, uint proposalId, bool choice) public h

asMinBalance(projectId, msg.sender) {

...

}

/**

* @notice Checks if an address holds the minimum required balance of

the voting token to create a proposal.

* @return True if the address holds the minimum required balance, fa

lse otherwise.

*/

function hasMinBalance(uint projectId, address addr) external view r

eturns (bool) {

if (addr == parametersContract.gitswarmAddress()) {

// GitSwarm is exempt, used for payroll proposals

return true;

}

uint required_amount = minimumRequiredAmount(projectId);

return delegatesContract.checkVotingPower(projectId, addr, required_

amount);

}

/**

* @notice Determines the minimum required amount of voting tokens ne

eded to create or vote on a proposal.

* @return The minimum required amount of voting tokens.

*/

function minimumRequiredAmount(uint projectId) public view returns (

uint) {//audit

return votingTokenCirculatingSupply(projectId) / parametersContract.

parameters(projectId, keccak256("MaxNrOfVoters"));

}

Later on, once the voting period ends, the method lockVoteCount will

be executed. This function will lock the voting and move to the next voting

stage or, in case the required voting power percentage is not meet, delete

the proposal.

/**

* @notice Locks the vote count for a proposal and starts the contest

ing phase or deletes it if it did not pass

*/

function lockVoteCount(uint projectId, uint proposalId) external {

...

uint yesVotes;

uint noVotes;

bool willExecute;

if (p.typeOfProposal == CREATE_TOKENS) {

(yesVotes, noVotes, willExecute) = checkVoteCount(projectId, proposa

lId, parametersContract.parameters(projectId, keccak256("RequiredVot

ingPowerPercentageToCreateTokens")));

} else {

(yesVotes, noVotes, willExecute) = checkVoteCount(projectId, proposa

lId, 50);

}

if (!willExecute) {

delete proposals[projectId][proposalId];

} else {

p.willExecute = true;

p.votingAllowed = false

p.endTime = block.timestamp + parametersContract.parameters(projectI

d, keccak256("BufferBetweenEndOfVotingAndExecuteProposal"));

}

19

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/9105b0c6-6015-460f-ab68-dd178d7f483e

emit LockVoteCount(projectId, proposalId, proposals[projectId][propo

salId].willExecute, yesVotes, noVotes);

}

The required voting power is evaluated via checkVoteCount,

getVoteCount and calculateTotalVotingPower. The latest function,

calculateTotalVotingPower will gather the voting power of each user

as the sum of their voting token balance and their delegated voting token

power.

function getVoteCount(uint projectId, uint proposalId) public view r

eturns (uint, uint) {

ERC20interface votingTokenContract = contractsManagerContract.voting

TokenContracts(projectId);

uint yesVotes;

uint noVotes;

for (uint64 i = 0; i < proposals[projectId][proposalId].nrOfVoters;

i++) {

address a = proposals[projectId][proposalId].voters[i];

Vote storage choice = proposals[projectId][proposalId].votes[a];

uint votingPower = calculateTotalVotingPower(projectId, a, proposalI

d, votingTokenContract);

if (choice.votedYes) {

yesVotes += votingPower;

} else {

noVotes += votingPower;

}

}

return (yesVotes, noVotes);

}

function calculateTotalVotingPower(uint projectId, address addr, uin

t id, ERC20interface tokenContract) view public returns (uint) {

return tokenContract.balanceOf(addr) + getDelegatedVotingPowerExclud

ingVoters(projectId, addr, id, tokenContract);

}

However, the minimum balance required for voting is not checked for

users who recorded their vote, opening a door to inconsistency.

One possible scenario is the exposed below: tokens can be transferred

from user to user, allowing the vote as long as each user reaches the

required voting power.

A given userA can vote for the YES option at any given time. Let's

assume their voting power is 1000 and the minimum voting power

required is 500. Later on, whilst the voting period is still active,

userA can transfer a 700 voting power to userB.

The later,decides to vote too, in this case for the NO option, since

700 voting power will meet the minimum requirement of 500

voting power. UserB can still send 500 voting power to another

userC.

Finally userC can still vote for the third time using the same

tokens. With their 500 voting power, userC can vote for NO too.

As a result of this case, given the fact that the minimum voting

power is not enforced in the lockVoteCount stage of the voting

process, the results are not the expected. Whilst the resulting

voting power for this example will be YES = 300 and NO = 700,

the desired result would be YES = 0 and NO = 500.

20

Another scenario is also possible, derived from the previous one: a user

holding several addresses can change their mind and vote for the other

option after transferring tokens from address to address:

A userA holding addressA and addressB wallets has 2000

voting power in addressA. This user votes for the YES option. If

the minimum voting power is 800, the option will be recorded.

Later on, whilst the voting period is still active, userA

transfers a 1500 voting power to addressB. If addressB is

used to vote the option NO, they will expect a contribution of

1500 voting power. However, the total contribution will be

equivalent to 1000 voting power, since the votes for the other

option should be subtracted from the total amount.

The function removeSpamVoters() removes votes from users who no

longer meet the minimum voting power. Thus, it can be used for cases like

the former exposed, as it is its purpose. However, calling this method is

not enforced in the lockVoteCount stage, which allows such

inconsistency.

/**

* @notice Removes votes from voters who no longer meet the minimum v

oting power requirement.

* This can be necessary for projects with a high MaxNrOfVoters.

* @dev Helps maintain integrity by removing spam or irrelevant votes

*/

function removeSpamVoters(uint projectId, uint proposalId, uint[] me

mory indexes) external {

uint minimum_amount = contractsManagerContract.votingTokenCirculatin

gSupply(projectId) / parametersContract.parameters(projectId, keccak

256("MaxNrOfVoters"));

emit RemovedSpamVoters(projectId, proposalId, indexes);

ProposalData storage p = proposals[projectId][proposalId];

for (uint64 index = uint64(indexes.length); index > 0; index--) {

// avoiding underflow when decrementing, that would have happened fo

r value 0

uint64 i = uint64(indexes[index - 1]);

require(i < p.nrOfVoters, "Index out of bounds");

if (!delegatesContract.checkVotingPower(projectId, p.voters[i], mini

mum_amount)) {

p.nrOfVoters--;

delete p.votes[p.voters[i]];

p.voters[i] = p.voters[p.nrOfVoters];

delete p.voters[p.nrOfVoters];

}

}

}

Another side effect is possible during the contesting period. This is the

period during which recount is allowed in order to apply a veto or

cancelling a proposal if more NO votes than YES votes are applied.

function contestProposal(uint projectId, uint proposalId, bool doRec

ount) external returns (bool) {

require(contractsManagerContract.hasMinBalance(projectId, msg.sender

), "Not enough voting power.");

ProposalData storage proposal = proposals[projectId][proposalId];

require(proposal.willExecute, "Can not contest this proposal, it is

not in the phase of contesting");

internal_vote(projectId, proposalId, false);

if (!doRecount) {

return false;

}

21

return processContest(projectId, proposalId);

}

function processContest(uint projectId, uint proposalId) internal re

turns (bool) {

(uint yesVotes, uint noVotes) = getVoteCount(projectId, proposalId);

if (noVotes >= parametersContract.neededToContest(projectId)) {

delete proposals[projectId][proposalId];

emit ContestedProposal(projectId, proposalId, yesVotes, noVotes);

return true;

}

if (noVotes > yesVotes) {

delete proposals[projectId][proposalId];

emit ContestedProposal(projectId, proposalId, yesVotes, noVotes);

return true;

}

return false;

}

In order to call the function contestProposal, the sender must meet the

requirement of minimum voting power. However, this is not checked for

the votes that are already recorded, resulting in a system blind to the

minimum voting power of already-emitted votes unless the function

removeSpamVoters is manually executed.

The following scenario opens up, as a result of the interaction with the

VetoMinimumPercentage: if options for NO are recorded for users with

residual voting power (i.e. lower than the required minimum) after a token

transfer was performed, a proposal may become cancelled without

meeting the actual requirements.

Finally, the executeProposal function in

ExpandableSupplyTokenBase is affected by this issue, since it performs

a call to checkVoteCount which, as exposed, will not consider the

minimum amount of voting power.

As a result, if the function removeSpamVoters has never been called, a

proposal can go through with unexpected voting power.

Assets:
Proposal.sol [https://github.com/GitSwarmOrg/contracts]

Status: Accepted

Classification

Impact: 3/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Likelihood [1-5]: 2

Impact [1-5]: 3

22

Exploitability [0-2]: 0

Complexity [0-2]: 1

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.7

Severity: Low

Recommendations

Remediation: It is recommended to call removeSpamVoters() within

lockVoteCount() to make sure only those users that meet the required

voting power are accounted for the proposal vote. Alternatively, a check

can be added into the function calculateTotalVotingPower in order to

return 0 when the minimum voting power is not met.

23

Observation Details

F-2024-2227 - Missing disableInitializers() can lead to unwanted

initialization - Info

Description: The project contains upgradable contracts: ContractsManager.sol,

Delegates.sol, FundsManager.sol, GasStation.sol, Proposal.sol

and UpgradeableToken.sol After an implementation contract is

deployed on the blockchain, its implementation must be called by the

development team to set up the basic functionalities of the contract.

However, the absence of a _disableInitilizers call in the constructor of

the implementation contract opens the possibility for each implementation

to be directly initialized by an external actor.

Assets:
ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

Delegates.sol [https://github.com/GitSwarmOrg/contracts]

FundsManager.sol [https://github.com/GitSwarmOrg/contracts]

GasStation.sol [https://github.com/GitSwarmOrg/contracts]

Proposal.sol [https://github.com/GitSwarmOrg/contracts]

UpgradableToken.sol [https://github.com/GitSwarmOrg/contracts]

Parameters.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: It is recommended to introduce a call to _disableInitializers()

within implementations constructor.

Resolution: The recommended _disableInitializers() call was added to the

aforementioned assets. The issue was fixed in the commit f830c0c.

24

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/525276c1-44bc-428d-a184-fa8615051844
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract

F-2024-2258 - Explicit uint256 best practice violation - Info

Description: The contracts declare unsigned integers as uint, which, by default, is set

to 256 bits. However, it is a best practice to explicitly set them to uint256

instead of using the default uint.

Assets:
Common.sol [https://github.com/GitSwarmOrg/contracts]

Constants.sol [https://github.com/GitSwarmOrg/contracts]

ERC20Base.sol [https://github.com/GitSwarmOrg/contracts]

ERC20interface.sol [https://github.com/GitSwarmOrg/contracts]

ExpandableSupplyTokenBase.sol

[https://github.com/GitSwarmOrg/contracts]

Interfaces.sol [https://github.com/GitSwarmOrg/contracts]

MyTransparentUpgradeableProxy.sol

[https://github.com/GitSwarmOrg/contracts]

SelfAdminTransparentUpgradeableProxy.sol

[https://github.com/GitSwarmOrg/contracts]

ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

Delegates.sol [https://github.com/GitSwarmOrg/contracts]

ExpandableSupplyToken.sol

[https://github.com/GitSwarmOrg/contracts]

FixedSupplyToken.sol [https://github.com/GitSwarmOrg/contracts]

FundsManager.sol [https://github.com/GitSwarmOrg/contracts]

GasStation.sol [https://github.com/GitSwarmOrg/contracts]

GitSwarmToken.sol [https://github.com/GitSwarmOrg/contracts]

Proposal.sol [https://github.com/GitSwarmOrg/contracts]

UpgradableToken.sol [https://github.com/GitSwarmOrg/contracts]

Parameters.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: Consider updating all uint declarations to uint256.

Resolution: The uint values were replaced with uint256 in the aforementioned

assets. The issue was fixed in the commit ec88426.

25

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/bbb38d76-e953-4482-8cbc-16feb6afa229

F-2024-2260 - Solidity style guide violation - Info

Description: The contract ERC20Base declares a constant state variable as

_decimals. However, according to the Solidity style guide, constants

should be named with CAPITAL_LETTERS.

Assets:
ERC20Base.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: It is recommended to update the name of the constant variable

_decimals to comply with the Solidity style guide.

Resolution: The variable _decimals was replaced with DECIMALS in the commit

f830c0c.

26

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/a1789505-862b-4a13-a881-d3b299a2e781
https://docs.soliditylang.org/en/latest/style-guide.html#constants

F-2024-2263 - Missing minimum amount check results in waste of

Gas - Info

Description: The function proposeCreateTokens does not check that the input

amount > 0, allowing the creation of a proposal that would result in a

waste of Gas.

Similarly, the function proposeTransferToGasAddress allows the

processing of a proposal of value 0.

The aforementioned functions can be seen in the code snippets below.

proposeCreateTokens()

/**

* @dev Proposes the creation of new tokens.

* @param amount The amount of new tokens to create.

*/

function proposeCreateTokens(uint amount) external {

require(!createMoreTokensDisabled, "Increasing token supply is perma

nently disabled");

createTokensProposals[proposalContract.nextProposalId(projectId)].am

ount = amount;

proposalContract.createProposal(projectId, CREATE_TOKENS, msg.sender

);

}

and proposeTransferToGasAddress()

/**

* @dev Proposes a transfer of ETH to a specified gas address.

* @param amount The amount of ETH to transfer.

* @param to The recipient address of the ETH.

* @notice The proposal is recorded and will be executed upon approva

l.

*/

function proposeTransferToGasAddress(uint amount, address to) extern

al {

transferToGasAddressProposals[proposalContract.nextProposalId(0)].am

ount = amount;

transferToGasAddressProposals[proposalContract.nextProposalId(0)].to

= to;

proposalContract.createProposal(0, TRANSFER_TO_GAS_ADDRESS, msg.send

er);

}

Assets:
ExpandableSupplyTokenBase.sol

[https://github.com/GitSwarmOrg/contracts]

GasStation.sol [https://github.com/GitSwarmOrg/contracts]

Status: Accepted

Recommendations

Remediation: It is recommended to check that the input amount > 0 or that surpasses

a minimal amount.

27

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/d498a5c2-1639-4568-be6a-a0c45e2402ec

F-2024-2268 - Residual proposal data is not deleted in proposal

execution - Info

Description: In the function executeProposal(), the created proposal in the

proposalContract is not deleted via deleteProposal() when

typeOfProposal == DISABLE_CREATE_MORE_TOKENS, resulting in

residual data that can confuse.

function executeProposal(uint proposalId) external {

...

if (typeOfProposal == CREATE_TOKENS) {

..

delete createTokensProposals[proposalId];

proposalContract.deleteProposal(projectId, proposalId);

createTokens(amount);

} else if (typeOfProposal == DISABLE_CREATE_MORE_TOKENS) {

createMoreTokensDisabled = true;

emit CreateMoreTokensDisabledEvent();

} else {

revert('Unexpected proposal type');

}

emit ExecuteProposal(projectId, proposalId);

}

Assets:
ExpandableSupplyTokenBase.sol

[https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: Consider deleting the created proposal via deleteProposal().

Resolution: The DISABLE_CREATE_MORE_TOKENS proposal is now deleted in the

ExpandableSupplyTokenBase::executeProposal(). It was fixed in

the commit ec88426.

28

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/3c00eed1-3ce3-4fc5-83fd-c6016aff7dd4

F-2024-2280 - Redundant call - Info

Description: The function executeProposal will delete the processed proposal via

deleteProposal in CHANGE_TRUSTED_ADDRESS type. However, this call

is duplicated since it be performed later in the same function:

function executeProposal(uint projectId, uint proposalId) external {

...

if (typeOfProposal == CHANGE_TRUSTED_ADDRESS) {

...

proposalContract.deleteProposal(projectId, proposalId);

} else if (typeOfProposal == CHANGE_PARAMETER) {

...

} else {

...

}

proposalContract.deleteProposal(projectId, proposalId);

emit ExecuteProposal(projectId, proposalId);

}

Assets:
Parameters.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: It is recommended to delete redundant code.

Resolution: The redundant call was deleted from the

Parameters::executeProposal() in the commit ec88426.

29

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/6f5c29f0-d518-44e3-814e-021e9a01c317

F-2024-2292 - Cache array length in loops to save gas - Info

Description: Several loops calculate the length of storage arrays instead of caching

such length into a memory variable. As a consequence, the whole array

will be accessed as a storage reading for each iteration, spending a big

amount of gas unnecessarily.

Additionally, this extra amount of gas will contribute to the likelihood of

reaching the block gas limit for such operations, as reported in the Risk

section of this report.

An example can be found below:

function isTrustedAddress(uint projectId, address trustedAddress) vi

ew public returns (bool) {

...

for (uint i = 0; i < trustedAddresses[projectId].length; i++) {

if (trustedAddresses[projectId][i] == trustedAddress) {

return true;

}

}

return false;

}

Affected functions are:

Parameters:: isTrustedAddress()

Delegates:: undelegateAddress(),

undelegateAllFromAddress()

ContractsManager:: burnedTokens(), executeProposal()

Proposal:: getVoteCount(), removeSpamVoters()

Assets:
ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

Delegates.sol [https://github.com/GitSwarmOrg/contracts]

Proposal.sol [https://github.com/GitSwarmOrg/contracts]

Parameters.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: Cache the array length into a memory variable to be iterated through.

Resolution: Fixed in commit d17439d.

30

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/8d78e447-b10b-404f-b834-0a973e79e5b7

F-2024-2302 - Code does not comply with NatSpec requirements -

Info

Description: According to the constructors' NatSpec, the parameter creatorSupply

must be non-zero. However, this is not enforced. The aforementioned

contracts can be found below.

ExpandableSupplyToken.sol

contract ExpandableSupplyToken is ExpandableSupplyTokenBase {

/**

* @param prjId The project ID for the new token.

* @param supply The total fixed supply of the token.

* @param creatorSupply The portion of the supply allocated to the cr

eator.

* @param contractsManagerAddress Address of the Contracts Manager.

* @param fundsManagerContractAddress Address of the Funds Manager Co

ntract.

* @param proposalContractAddress Address of the Proposal Contract.

* @param tokenName The name of the token.

* @param tokenSymbol The symbol of the token.

*

* Requirements:

* - `creatorSupply` must be non-zero.

* - Contract must have no pre-existing supply (`__totalSupply` == 0)

.

*/

constructor(

string memory prjId,

uint supply,

uint creatorSupply,

address contractsManagerAddress,

address fundsManagerContractAddress,

address proposalContractAddress,

address parametersContractAddress,

string memory tokenName,

string memory tokenSymbol

) {

name = tokenName;

symbol = tokenSymbol;

_init(address(0), fundsManagerContractAddress, parametersContractAdd

ress, proposalContractAddress, address(0), contractsManagerAddress);

contractsManagerContract.createProject(prjId, address(this), false);

createInitialTokens(supply, creatorSupply);

}

}

and FixedSupplyToken.sol

contract FixedSupplyToken is ERC20Base {

uint immutable public projectId;

/**

* @param prjId The project ID for the new token.

* @param supply The total fixed supply of the token.

* @param creatorSupply The portion of the supply allocated to the cr

eator.

* @param contractsManagerAddress Address of the Contracts Manager.

* @param fundsManagerContractAddress Address of the Funds Manager Co

ntract.

* @param proposalContractAddress Address of the Proposal Contract.

* @param tokenName The name of the token.

* @param tokenSymbol The symbol of the token.

*

* Requirements:

* - `creatorSupply` must be non-zero.

* - Contract must have no pre-existing supply (`__totalSupply` == 0)

.

*/

constructor(

31

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/1dc96e83-b87b-4345-a2f9-2d5a68acb013

string memory prjId,

uint supply,

uint creatorSupply,

address contractsManagerAddress,

address fundsManagerContractAddress,

address proposalContractAddress,

address parametersContractAddress,

string memory tokenName,

string memory tokenSymbol

) {

name = tokenName;

symbol = tokenSymbol;

_init(address(0), fundsManagerContractAddress, parametersContractAdd

ress, proposalContractAddress, address(0), contractsManagerAddress);

contractsManagerContract.createProject(prjId, address(this), false);

projectId = contractsManagerContract.nextProjectId() - 1;

__totalSupply = supply + creatorSupply;

__balanceOf[msg.sender] = creatorSupply;

__balanceOf[address(fundsManagerContract)] = supply;

fundsManagerContract.updateBalance(projectId, address(this), supply)

;

}

}

Assets:
ExpandableSupplyToken.sol

[https://github.com/GitSwarmOrg/contracts]

FixedSupplyToken.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: Consider adding a check to make sure creatorSupply > 0.

Resolution: The NatSpec comments were removed. The mismatch between NatSpec

and the implementation was fixed in the commit ec88426.

32

F-2024-2303 - Missing check to ensure the next project Id is correct

- Info

Description: New projects are created in ContractsManager.sol using

createProject(), where the projectId is defined as dbProjectId.

However, there is no check to enforce that the parameter corresponds to

nextProjectId. There is a code snippet below which demonstrates this

problem.

function createProject(string memory dbProjectId, address tokenContr

actAddress, bool checkErc20) public {

require(tokenContractAddress != address(0), "Contract address can't

be 0x0");

if (checkErc20) {

require(isERC20Token(tokenContractAddress), "Address is not an ERC20

token contract");

}

parametersContract.initializeParameters(nextProjectId);

burnAddresses[nextProjectId].push(BURN_ADDRESS);

votingTokenContracts[nextProjectId] = ERC20interface(tokenContractAd

dress);

emit CreateProject(nextProjectId, dbProjectId, tokenContractAddress)

;

nextProjectId++;

}

Assets:
ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: Consider adding a check to make sure dbProjectId matches

nextProjectId.

Resolution: The issue was considered fixed after the following explanation from the

GitSwarm team:

The emitted dbProjectId is a string and only used in our server

backend code, unrelated to the uint projectId and

nextProjectId variables from the contracts.

33

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/b7b02ab0-1950-4d2d-b5c8-ed81ff465710

F-2024-2304 - Missing check if project exists - Info

Description: In the ContractsManager::proposeTransaction() there is no check

to ensure the corresponding project exists, resulting in a waste of gas and

unexpected results.

function proposeTransaction(

uint projectId,

address[] memory tokenContractAddress,

uint[] memory amount,

address[] memory to,

uint[] memory depositToProjectId) external {

require(amount.length > 0, "Amount can't be an empty list.");

require(amount.length == to.length && amount.length == depositToProj

ectId.length &&

amount.length == tokenContractAddress.length,

"'amount', 'to' and 'depositToProjectId' arrays must have equal leng

th");

for (uint i = 0; i < amount.length; i++) {

require(amount[i] > 0, "Amount must be greater than 0.");

}

uint nextProposalId = proposalContract.nextProposalId(projectId);

TransactionProposal storage p = transactionProposals[projectId][next

ProposalId];

p.token = tokenContractAddress;

p.amount = amount;

p.depositToProjectId = depositToProjectId;

p.to = to;

proposalContract.createProposal(projectId, TRANSACTION, msg.sender);

}

Assets:
ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

Status: Accepted

Recommendations

Remediation: Consider adding a check to make sure the project exists.

34

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/c7e60922-dea8-45dc-a9c6-187cbda365b3

F-2024-2352 - GitSwarm address can be removed from voters - Info

Description: The functions removeSpamVoters() and getSpamVoters() identify the

voters that have not enough voting power and should/will be removed

from the voting.

However, it is not checked whether the GitSwarm address is deleted. This

allows this privileged, tie-breaker address to be erased, whilst playing an

important role in the voting system.

function removeSpamVoters(uint projectId, uint proposalId, uint[] me

mory indexes) external {

uint minimum_amount = contractsManagerContract.votingTokenCirculatin

gSupply(projectId) / parametersContract.parameters(projectId, keccak

256("MaxNrOfVoters"));

emit RemovedSpamVoters(projectId, proposalId, indexes);

ProposalData storage p = proposals[projectId][proposalId];

for (uint64 index = uint64(indexes.length); index > 0; index--) {

// avoiding underflow when decrementing, that would have happened fo

r value 0

uint64 i = uint64(indexes[index - 1]);

require(i < p.nrOfVoters, "Index out of bounds");

if (!delegatesContract.checkVotingPower(projectId, p.voters[i], mini

mum_amount)) {

p.nrOfVoters--;

delete p.votes[p.voters[i]];

p.voters[i] = p.voters[p.nrOfVoters];

delete p.voters[p.nrOfVoters];

}

}

}

Assets:
Proposal.sol [https://github.com/GitSwarmOrg/contracts]

Status: Fixed

Recommendations

Remediation: Consider protecting the GitSwarm address from being removed from

voters.

Resolution: Fixed in commit d17439d. The gitswarmAddress address is now skipped

in the Proposal::removeSpamVoters() and

Proposal::getSpamVoters().

35

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/76dc9c4a-b3b0-4c30-9e87-588f2fdb040b

F-2024-2353 - The isERC20Token() function does not completely

verify the adherence to the ERC20 standard - Info

Description: The ContractsManager::isERC20Token() function does not

completely verify the adherence to the ERC20 standard, which creates a

security risk of adding not fully erc20 compliant tokens. The function can

be found in the code snippet below.

/**

* @notice Verifies if a given address is an ERC20 token contract.

* @dev Attempts to call ERC20-specific functions to confirm complian

ce.

* @param _addr The address to be verified.

* @return True if the address is an ERC20 token contract, false othe

rwise.

*/

function isERC20Token(address _addr) public view returns (bool) {

address dummyAddress = 0x00;

if (_addr.code.length == 0) {

return false;

}

try ERC20interface(_addr).name() {} catch {return false;}

try ERC20interface(_addr).symbol() {} catch {return false;}

try ERC20interface(_addr).decimals() {} catch {return false;}

try ERC20interface(_addr).totalSupply() {} catch {return false;}

try ERC20interface(_addr).balanceOf(dummyAddress) {} catch {return f

alse;}

try ERC20interface(_addr).allowance(dummyAddress, dummyAddress) {} c

atch {return false;}

return true;

}

The function ContractsManager::isERC20Token() does not take into

account the complete list of ERC20 methods: transfer(), approve()

and transferFrom(), which creates a risk of adding a not fully ERC20

compliant voting token.

Assets:
ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

Status: Mitigated

Recommendations

Remediation: It is recommended to add the necessary checks to ensure that the

adherence to the ERC20 standard is verified completely.

Resolution: The finding was considered Mitigated given the following explanation from

the GitSwarm team:

36

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/220e5e38-2ac5-4130-b033-135429494178

The purpose of this method is to catch user error. Creating a

project with a non functioning voting token will lead to that

project being unusable but it should not affect other projects.

37

F-2024-2355 - Users can create projects without ERC20 compliant

voting tokens - Info

Description: Users can create new projects using the function createProject, where

they input the tokenContractAddress as the token to be used for

voting.

This token should be ERC20 compliant, but the users can choose not to

check that compliance when calling this function. As a result, users can

use addresses that are not compliant with this requirement, resulting in a

malfunction.

function createProject(string memory dbProjectId, address tokenContr

actAddress, bool checkErc20) public {

require(tokenContractAddress != address(0), "Contract address can't

be 0x0");

if (checkErc20) {

require(isERC20Token(tokenContractAddress), "Address is not an ERC20

token contract");

}

parametersContract.initializeParameters(nextProjectId);

burnAddresses[nextProjectId].push(BURN_ADDRESS);

votingTokenContracts[nextProjectId] = ERC20interface(tokenContractAd

dress);

emit CreateProject(nextProjectId, dbProjectId, tokenContractAddress)

;

nextProjectId++;

}

Assets:
ContractsManager.sol [https://github.com/GitSwarmOrg/contracts]

Status: Accepted

Recommendations

Remediation: It is recommended to always check wether the input token is ERC20

compliant.

38

https://portal.hacken.io/App/Projects/Details/fc80c8b1-7ba1-42ef-9b16-e741b0baa057/Finding/fefd6ade-62ff-420d-bae7-9740e377419e

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications. Do not consider this report as a final and sufficient assessment regarding the utility

and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

39

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,

Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of

user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a

more limited scope, but can still lead to the loss of user funds or contract state

manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases,

cannot lead to asset loss. Contradictions and requirements violations. Major deviations

from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not have

a significant impact on code execution, do not affect security score but can affect code

quality score.

40

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/GitSwarmOrg/contracts

Commit a07999c

Remediation commit 8e707a9

Whitepaper -

Requirements NatSpec

Technical Requirements NatSpec

Contracts in Scope

./contracts/prod/1.1/base/Common.sol

./contracts/prod/1.1/base/Constants.sol

./contracts/prod/1.1/base/ERC20Base.sol

./contracts/prod/1.1/base/ERC20interface.sol

./contracts/prod/1.1/base/ExpandableSupplyTokenBase.sol

./contracts/prod/1.1/base/Interfaces.sol

./contracts/prod/1.1/base/MyTransparentUpgradeableProxy.sol

./contracts/prod/1.1/base/SelfAdminTransparentUpgradeableProxy.sol

./contracts/prod/1.1/ContractsManager.sol

./contracts/prod/1.1/Delegates.sol

./contracts/prod/1.1/ExpandableSupplyToken.sol

./contracts/prod/1.1/FixedSupplyToken.sol

./contracts/prod/1.1/FundsManager.sol

./contracts/prod/1.1/GasStation.sol

./contracts/prod/1.1/Parameters.sol

./contracts/prod/1.1/Proposal.sol

41

https://github.com/GitSwarmOrg/contracts
https://github.com/GitSwarmOrg/contracts
https://github.com/GitSwarmOrg/contracts

Contracts in Scope

./contracts/prod/1.1/UpgradableToken.sol

42

